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ABSTRACT

Undular bores, also termed dispersive shock waves, generated by an initial discontinuity in height as governed by two forms of the
Boussinesq system of weakly nonlinear shallow water wave theory, the standard formulation and a Hamiltonian formulation, two related
Whitham–Boussinesq equations, and the full water wave equations for gravity surface waves are studied and compared. It is found that the
Whitham–Boussinesq systems give solutions in excellent agreement with numerical solutions of the full water wave equations for the
positions of the leading and trailing edges of the bore up until the onset on modulational instability. The Whitham–Boussinesq systems,
which are far simpler than the full water wave equations, can then be used to accurately model surface water wave undular bores. Finally,
comparisons with numerical solutions of the full water wave equations show that the Whitham–Boussinesq systems give a slightly lower
threshold for the onset of modulational instability in terms of the height of the initial step generating the undular bore.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0050067

I. INTRODUCTION

Dispersive shock waves (DSW), also termed undular bores in fluid
mechanics applications, are a generic type of wave phenomenon arising
as solutions of nonlinear dispersive wave equations. DSWs are formed
due to the dispersive regularization of a wave breaking singularity or an
initial jump discontinuity, as opposed to the viscous shocks of compress-
ible flow in which viscosity smooths the shock.1 In their generic form,
they are a modulated wavetrain, consisting of solitary waves at one edge
and linear dispersive waves at the opposite edge, which links two dispa-
rate flow states, thus displaying a range of nonlinearities within a single
coherent structure.2 In addition to their theoretical interest as a generic
nonlinear wave form, DSWs are readily observable in a wide range of
applications, examples including meteorology,3–5 oceanography,6–10

water waves,7,8,11 plasmas,12 geophysics,13–16 nonlinear optics,17–26 elas-
ticity,27 Bose–Einstein condensates,28 magnetic films,29 and Fermionic
fluids;30 see Ref. 2 for a summary of these applications.

The unsteady, multiscale dynamics of DSWs, which exhibit
diverging leading and trailing edges, have far reaching physical and
mathematical implications, among which are the inapplicability of the
classical Rankine–Hugoniot shock conditions and the inseparability of

the macroscopic DSW dynamics from its microscopic nonlinear oscil-
latory structure.2 The mathematical description of DSWs involves a
synthesis of methods from hyperbolic quasi-linear systems, asymptotic
theory and solitary wave theory. One of the principal tools used to
analyze DSWs is Whitham modulation theory.1,31,32 Within this the-
ory, DSWs are typically described as simple wave solutions of the
Whitham modulation equations when the underlying modulated
wavetrain is stable, so that the modulation system is hyperbolic. The
first such solution was constructed by Gurevich and Pitaevskii for the
KdV equation,33 based on the Whitham modulation equations for
the KdV equation.1,32

The derivation of a DSW solution from the Whitham modula-
tion equations for a nonlinear dispersive wave equation requires that
these be set in Riemann invariant form, which is only guaranteed if
the underlying equation is integrable34 or that they form a second-
order system.1 These restrictions rule out finding DSW solutions of
many nonlinear dispersive equations arising in applications. In a
major advance, it was realized that Whitham modulation equations
have a degenerate form in their solitary wave and linear wave limits. A
result of this is that the solitary wave and linear wave edges can be
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determined for general nonlinear dispersive wave equations.2,35 This
method for determining the edges of a DSW is termed the dispersive
shock fitting method and determines these DSW edges for DSWs of
“KdV-type.” The basic constraints for the existing analytical theory for
DSWs identified in the review2 are (i) one spatial dimension, (ii) con-
stant coefficients for the nonlinear and dispersive terms, (iii) the exis-
tence of steady traveling wave solutions, and solitary wave solutions, in
particular, (iv) convexity of the linear dispersion relation, (v) strict
hyperbolicity and genuine nonlinearity of the long wave (dispersion-
less) limit, and (vi) strict hyperbolicity and genuine nonlinearity of the
associated nonlinear modulation (Whitham) system.

This work is concerned with the classical topic of surface water
wave DSWs. As we are concerned with DSWs as a surface water wave,
the term undular bore will be used for this type of DSW to conform
with the fluid mechanics terminology. Undular bores governed by two
versions of the Boussinesq system, the standard version,1 termed
System A, and one derived from the Hamiltonian form of the water
wave equations,36–38 termed System B, and their related
Whitham–Boussinesq equations,39,40,42,43 will be studied. These undu-
lar bore solutions will be found using the dispersive shock fitting
method and will be compared with solutions of the full water wave
equations. Weakly nonlinear, long wave equations, such as, the
Korteweg–de Vries (KdV) and Boussinesq equations,1 which are
approximations to the full water wave equations, do not exhibit short
wave effects, such as, breaking and peaking which are exhibited by sol-
utions of the full water wave equations. To explore short wave effects
in the context of weakly nonlinear dispersive wave equations,
Whitham proposed replacing the third order dispersion of the KdV
equation with full water wave dispersion, resulting what is now termed
as the Whitham equation

@u
@t

� @u
@x

þ 6u
@u
@x

þ
ð1
�1

Kðx � nÞunðn; tÞ dn ¼ 0;

K ¼ F�1

ffiffiffiffiffiffiffiffiffiffiffi
tanhk
k

r( )
;

(1)

where F�1 denotes the inverse Fourier transform.1,44 Expanding tanhk
in a Taylor series to Oðk3Þ results in the KdV equation. An analysis of
this Whitham equation, and related equations, shows that their solu-
tions exhibit the short wave effects of breaking and peaking, limiting
solutions of largest height (reminiscent of the cusped Stokes water
wave of greatest height).1,45–50 While these unidirectional models with
nonlocal terms, such as, (1), were proposed in order to study particular
effects and were not derived directly from the water wave equations,
recently Craig et al.51 reconsidered the problem of long water waves
using expansions of the nonlocal operators arising in the Hamiltonian
formulation of the water wave equations, which are valid for arbitrary
bottom topography. The end result is a Hamiltonian formulation in
terms of pseudodifferential operators which can be calculated recur-
sively in terms of the shape of the wave and the depth variation. It was
subsequently shown that bidirectional analogues of the Whitham
equation can be derived from the Hamiltonian formulation of the
water wave equations.39,40,52 Two bidirectional Whitham equation sys-
tems will be studied in this paper. One is derived followingWhitham’s
heuristic derivation of the original Whitham equation (1) using a com-
bination of the full dispersion relation of water waves and the nonlin-
ear convection term of the shallow water equations, introduced as the

“full-dispersion shallow water equations.”41,42 The other is derived
using the Hamiltonian formulation of the water wave equations,51

which has the benefit of being a valid asymptotic approximation of the
full water wave equations.

In addition, solutions of the Whitham equation (1) and bidirec-
tional analogues of the Whitham equation were found to be in as
good, or even better, agreement with solutions of the full water wave
equations as compared with the KdV, the Benjamin–Bona–Mahony
equation, the Serre equations and the shallow water equations.39,52,53

Whitham equations have also been found to give solutions in better
agreement with experimental results for shallow water waves than the
KdV equation or Serre equations.43 Two of the bidirectional Whitham
systems whose solutions were compared with experimental results43

are also used in the present work and are referred to as Systems C and
D. System D is derived from the Hamiltonian formulation of the water
wave equations, while System C is proposed41,42 in the same manner
as Whitham did for the original Whitham equation.1 Previous work
has shown that the undular bore solution of the Whitham equation
(1) differs substantially from the KdV undular bore as the height of
the initial step which generates the bore grows and that it exhibits
short wave Benjamin–Feir instability for a high enough initial step.65

The organization of the paper is as follows. In Sec. II, we formu-
late the water wave problem using Dirichlet–Neumann operators
based on the Hamiltonian formulation of the water wave equations
and cite and derive four weakly nonlinear systems, including the stan-
dard Boussinesq system1 and a Boussinesq system derived from the
Hamiltonian formulation of the water wave equations,36–38 referred to
as Systems A and B, and Whitham–Boussinesq systems derived from
these, referred to as Systems C and D. In Sec. III, we derive the disper-
sion relations for the four Boussinesq systems studied and the disper-
sionless limits associated with each of these weakly nonlinear systems.
In Sec. IV, we use the dispersive shock fitting method2,35 to find the
solutions for the leading and trailing edges of a bore as governed by
each of these four Boussinesq systems. Finally, in Sec. V we compare
results of the Boussinesq systems with full numerical solutions of the
water wave equations. The role of short wave effects on the develop-
ment of Benjamin–Feir instability in the bore is made clear, with par-
ticular reference to how this instability evolves as the bore amplitude
grows.1,54 The inclusion of short wave effects via the full water wave
dispersion relation in the Whitham–Boussinesq systems is needed for
a Boussinesq system to predict this instability.

II. WHITHAM–BOUSSINESQ EQUATIONS

Let us consider two dimensional (depth and horizontal direction)
gravity waves on the surface of an inviscid, incompressible fluid of
undisturbed depth h0 bounded below by an impermeable horizontal
bottom.We take the y direction to be opposite to the direction of grav-
ity and x horizontal. The water wave equations1 in terms of the veloc-
ity potential u and the surface displacement gðx; yÞ are

r2u ¼ 0; (2)

within the fluid, together with the surface conditions

gt þ uxgx ¼ uy; (3)

ut þ
1
2
jruj2 þ gg ¼ 0; (4)
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at y ¼ gðxÞ and the bottom boundary condition

ru � NðbÞ ¼ 0; (5)

at y ¼ �h0 þ bðxÞ, whereNðbÞ is the exterior unit normal on the rigid
boundary. It was shown by Zakharov38 that these water wave equations
can be stated as a Hamiltonian system with infinitely many degrees of
freedom in terms of the wave amplitude gðx; tÞ and surface hydrody-
namic potential nðx; tÞ ¼ uðx; gðx; tÞ; tÞ.36,37 This Hamiltonian for-
mulation is

@t
g
n

� �
¼

0 I

�I 0

 ! dH
dg
dH
dn

0
BBB@

1
CCCA; (6)

where the Hamiltonian is expressed explicitly in terms of g and n as

H ¼ 1
2

ð
R

nGðb; gÞnþ gg2
� �

dx; (7)

see Ref. 55. The Hamiltonian formulation was originally developed for
a fluid of varying depth, but here we consider a fixed depth, bðxÞ � 0;
in this case, let us now introduce the Dirichlet–Neumann operator
GðgÞ, which is defined as follows. Fix g and n, let u be the (unique)
solution of the boundary value problem,

r2uðx; yÞ ¼ 0 8 ðx; yÞ 2 DtðgÞ :
¼ fðx; yÞ : x 2 R;�h0 < y < gðx; tÞg; (8)

uðx; gðxÞÞ ¼ nðxÞ 8 x 2 R; (9)

@u
@n

ðx;�h0Þ ¼ 0 8 x 2 R; (10)

in the two-dimensional (time-dependent) simply connected
domain DtðgÞ together with the appropriate periodic or asymptotic
conditions on u, and we define the Dirichlet–Neumann operator GðgÞ
by

ðGðgÞÞ nðxÞ½ � ¼ 1þ ð@xgðxÞÞ2
� �1

2�uðx; gðxÞÞ � NðgðxÞÞ; (11)

where

NðgðxÞÞ ¼ 1þ ð@xgðxÞÞ2
� ��1

2ð�@xgðxÞ; 1Þ x 2 R; (12)

is the exterior unit normal at the free surface. The Dirichlet–Neumann
operator GðgÞ is a linear operator on n. However, it is nonlinear with
explicitly nonlocal behavior in the two functions bðxÞ and gðxÞ, which
give the lower and upper boundaries of the fluid domain. This opera-
tor maps Dirichlet data for harmonic functions to Neumann data at
the free surface and is symmetric with respect to the usual L2 inner
product. Note that definition (11) for the Dirichlet–Neumann opera-
tor is given in abstract terms as there is no explicit expression for this
operator for a general fluid domain. In order to obtain ½GðgÞ�½nðxÞ�,
given the function n, the surface hydrodynamic potential at time t, we
need to solve the elliptic problem described by (8)–(10) and then solve
a nonlocal equation to obtain the normal derivative of the hydrody-
namic potential. This is then evaluated at the free surface, thus obtain-
ing the mapping ½GðgÞ�½nðxÞ�:

Craig et al.51 give an expansion of the operator GðgÞ as

GðgÞ ¼ G0ðgÞ þ G1ðgÞ þ G2ðgÞ þ � � � ; (13)

where the Gj are homogeneous of degree j in g. The explicit expres-
sions for the first terms in this expansion are

G0ðgÞ ¼ D tanhðh0DÞ; (14)

G1ðgÞ ¼ DgD� G0gG0; (15)

G2ðgÞ ¼
1
2
ðG0Dg

2D� D2g2G0 � 2G0gG1Þ; (16)

where D ¼ �i@x and G0 ¼ G0ðgÞ. Here, we are using the notation

aðf ðxÞDmÞn½ �ðxÞ ¼
ð
R

aðf ðxÞkmÞn̂ðkÞeikxdk; (17)

where a and f are real functions and

n̂ðkÞ ¼ 1
2p

ð
R

nðxÞe�ikx dx (18)

is the Fourier transform of the real function n. At higher order, the Gj,
j> 2, are similarly obtained from G0 using a recursion relation.51

The Hamiltonian evolution equations (6) and (7) can be set in
terms of the velocity potential at the surface n ¼ u½x; gðxÞ� and the
surface displacement gðx; yÞ as

gt ¼ Gðb; gÞn; (19)

nt ¼ � 1
2ð1þ g2xÞ

n2x � ðGðb; gÞnÞ2 þ 2gxnxGðb; gÞn
h i

� gg: (20)

Let us now consider the water wave equations in the shallow
water limit, that is, a typical wavelength is much greater than the fluid
depth h0. Let us take a typical wavelength to be l and a typical wave
amplitude to be a. We then define two nondimensional parameters
a ¼ a=h0 and d ¼ ðh0=lÞ2. The Hamiltonian (7) takes the form of a
polynomial in g of pseudodifferential operators acting on the variable
n. To obtain the Boussinesq–Whitham approximation, we Taylor
expand all the Fourier multipliers in G, such as, tanhðh0DÞ, in powers
of the derivative h0D. However, to keep the full linear dispersion rela-
tion we follow Whitham1,44 and use the exact expression for the con-
stant depth quadratic part 1

2

Ð
R
nDtanhðh0DÞdx and apply the

expansion to powers of derivatives in all remaining terms of H.
Finally, we use the usual Boussinesq scaling a ¼ d to approximate the
remaining terms. To this end, we scale the wavelength in the shallow
water form l ¼ h0=

ffiffiffi
d

p
and take e ¼ a ¼ d � 1. Finally, let us now

use nondimensional variables so that h0 ¼ 1 and g¼ 1. We then have
H ¼ H0 þ Oðe2Þ, with H0 the Whitham–Boussinesq Hamiltonian
given by

H0 ¼
1
2

ð
R

ðnD tanhðDÞnþ gð@xnÞ2 þ g2Þdx: (21)

Hamilton’s equation (6) associated with this Whitham–Boussinesq
Hamiltonian (21) gives the following system, on setting u ¼ nx ,

gt ¼ �@x
tanhD
D

� �
u

� �
� ðguÞx; (22)

ut ¼ �gx � uux: (23)

We shall term this system the Whitham–Boussinesq–Hamiltonian
system. To understand the relationship between this system and
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standard Boussinesq systems, we expand the differential operator
tanhD in the Hamiltonian (21) in a Taylor series to second order,
resulting in

H00 ¼
1
2

ð
R

n ðDÞ2 � 1
3
ðDÞ4

� �
nþ gð@xnÞ2 þ g2Þdx: (24)

Computing the variational derivatives of this functional given by (6),
we obtain the system

gt ¼ �nxx �
1
3
nxxxx � ðgnxÞx; (25)

nt ¼ �g� 1
2
n2x: (26)

Now, if we introduce the horizontal velocity u ¼ nx and differentiate
(26) with respect to x, we obtain the system (28) below. This system is a
variation of the standard Boussinesq system from shallow water theory.1

A. Weakly nonlinear systems

The undular bore solutions of the Whitham–Boussinesq–
Hamiltonian systems and the Boussinesq systems will be compared
with numerical bore solutions of the full water wave equations (2)–(5).
To obtain an understanding of the role of short wave effects and the
accuracy of the various Boussinesq systems, the undular bore solution
of the standard Boussinesq system1 and its related Whitham–
Boussinesq system will also be obtained. We shall then obtain the
undular bore solutions of the following four Boussinesq systems.

System A The standard Boussinesq system1

gt ¼ �ux � ðguÞx;

ut ¼ �uux � gx �
1
3
gxxx:

(27)

System B The Boussinesq system derived from the Hamiltonian
(24), termed the Boussinesq–Hamiltonian system51

gt ¼ �ux �
1
3
uxxx � ðguÞx;

ut ¼ �gx � uux:
(28)

System C This Whitham–Boussinesq system has been derived
from a combination of the full dispersion relation for water waves and
the convective term of the nonlinear shallow water equations. The sys-
tem has been termed the “full-dispersion shallow water equations”41,42

and is

gt ¼ �ux � ðguÞx;

ut ¼ �uux � @x
tanhD
D

� �
g

� �
:

(29)

System D This Whitham–Boussinesq–Hamiltonian system has
been derived from the Hamiltonian formulation of the water wave
equations (21),39

gt ¼ �@x
tanhD
D

� �
u

� �
� ðguÞx;

ut ¼ �gx � uux:
(30)

The initial condition used to generate the undular bore is the step
initial condition in wave height,

gðx; 0Þ ¼
g� x < 0;

gþ x > 0:

(
(31)

The initial velocity is chosen to be uðx; 0Þ ¼ 0 for simplicity. The anal-
ysis of the present work could be easily extended to include a jump in
the initial velocity.

The undular bore solutions of these four Boussinesq systems
have a common general structure. A typical solution is shown in Fig. 1
for the Whitham–Boussinesq–Hamiltonian system (30), System D, for
the initial condition (31) with gþ ¼ 0 and g� ¼ 0:2. The initial condi-
tion breaks up into a backward propagating expansion wave and a for-
ward propagating undular bore, connected by an intermediate shelf of
height gi, as typical for bidirectional nonlinear dispersive wave equa-
tions whose periodic wave solution is modulationally stable.2 The
undular bore is a slowly varying modulated wavetrain whose wave-
number k ! 0 at the leading edge, so that the leading edge consists of
solitary waves. At the trailing edge, the amplitude of the wavetrain
a ! 0, so that the trailing edge consists of linear dispersive waves. The
solution for the backward propagating expansion wave is given by a
simple wave solution of the non-dispersive limit of the relevant
Boussinesq system.2 This expansion wave solution is not the focus of
the present work, as the undular bore is the focus, and comparisons
between the expansion wave solution of the Boussinesq systems and
solutions of the full water wave equations will not be given here. The
solution shown in the figure is the dispersive equivalent of the solution
of the shock tube problem of compressible flow,1 with the undular
bore replacing the gasdynamic shock wave. The solution in Fig. 1 is
shown at the time t¼ 200 so that the separation between the (back-
ward propagating) expansion wave and the (forward propagating)
undular bore is not so great that the details of the bore would not be
visible in the figure.

As discussed in the Introduction, to obtain the full undular bore
solution of a nonlinear, dispersive wave equation, the Whithammodu-
lation equations for this equation need to be known. As these modula-
tion equations are not known for the four Boussinesq systems studied
in this work, the leading and trailing edges of the undular bore

FIG. 1. Typical solution of the Whitham–Boussinesq–Hamiltonian system (30),
System D, for the surface elevation g: green (dashed) line. Initial condition (31):
blue (dotted-dotted-dashed) line. Here, gþ ¼ 0; g� ¼ 0:2, and t¼ 200.
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solutions of the four Boussinesq systems will be found using the dis-
persive shock fitting method.2,35 All that is required for the application
of this method is the linear dispersion relation for the relevant equa-
tion. The dispersive shock fitting method then determines the veloci-
ties of the leading and trailing edges of the undular bore. To determine
the amplitude of the leading edge, the amplitude–velocity relation
for the solitary wave solution needs to be determined. This can be
found for the Boussinesq systems (27) and (28), but not for the
Whitham–Boussinesq equations. The amplitude–velocity relations for
the solitary wave solutions of Systems A and B, the standard
Boussinesq systems, will now be found.

System A Standard Boussinesq system
Let us seek the solitary wave solution of the standard Boussinesq

system1 (27), system A, with u ¼ uðhÞ and g ¼ gðhÞ, where
h ¼ x � Vt. Substituting into the Boussinesq system, eliminating
between the equations and integrating once gives

�V2g� V2

1þ g
þ g2 þ 1

3
g02 ¼ �V2: (32)

At the solitary wave maximum, g0 ¼ 0 and g ¼ a, so that the
amplitude–velocity relation for the solitary wave is

V ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ a

p
: (33)

System B Boussinesq–Hamiltonian system51

In a similar manner, we can determine the amplitude–velocity
relation for the Boussinesq–Hamiltonian system (28). We again seek
solutions of the forms u ¼ uðhÞ and g ¼ gðhÞ. Substituting these into
the Boussinesq–Hamiltonian system and integrating once gives

1
3
u02 þ ð1� V2Þu2 þ Vu3 � 1

4
u4 ¼ 0: (34)

At the solitary wave maximum u0 ¼ 0, so that the amplitude–velocity
relation is

V ¼ 1þ 1
2
a; (35)

for a right traveling solitary wave. For small amplitude a, this is
asymptotically the same as that for the standard Boussinesq system
(33).

III. UNDULAR BORE SOLUTIONS

All four Boussinesq systems (27)–(30) have the same non-
dispersive limit,

gt þ ux þ guð Þx ¼ 0; (36)

ut þ gx þ uux ¼ 0: (37)

This hyperbolic system can be set in the Riemann invariant form,

Cþ : uþ 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
¼ Rþ on

dx
dt

¼ uþ
ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
¼ Vþ; (38)

C� : u� 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
¼ R� on

dx
dt

¼ u�
ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
¼ V�: (39)

The backward propagating expansion wave seen in Fig. 1 forms on the
characteristic C� with the solution constant on the characteristics Cþ.
We then have that the Riemann invariant Rþ is

uþ 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g�

p
; (40)

on using the initial condition (31). We then have that the expansion
wave solution is

g¼

g�; � ffiffiffiffiffiffiffiffiffiffiffiffi
1þg�

p
<
x
t
;

1
9

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þg�

p
�x
t

� �2
�1; � ffiffiffiffiffiffiffiffiffiffiffiffi

1þg�
p �x

t
�2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þg�

p
�3

ffiffiffiffiffiffiffiffiffiffiffi
1þgi

p
;

gi; 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þg�

p �3
ffiffiffiffiffiffiffiffiffiffiffi
1þgi

p
<
x
t
�s�;

8>>>>>><
>>>>>>:

(41)

with u ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g�

p � 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
. Here, s� is the velocity of the trailing

edge of the undular bore.
The non-dispersive equations in Riemann invariant form (38)

and (39) can also be used to determine the intermediate level gi. The
Riemann invariant on the characteristic C� is conserved through the
undular bore.2,35 Hence

u� 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gþ

p
: (42)

Using the Riemann invariant on Cþ (40) then gives the intermediate
level and the velocity on the intermediate level ui asffiffiffiffiffiffiffiffiffiffiffiffi

1þ gi
p

¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gþ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g�

ph i
;

ui ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g�

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gþ

p
:

(43)

This completes the solution outside of the undular bore region for all
four Boussinesq systems.

A. System A: Standard Boussinesq system

Let us now find the leading and trailing edges of the undular bore
solution of the standard Boussinesq system (27) using the dispersive
shock fitting method.2,35 The basis of the dispersive shock fitting
method is the linear dispersion relation for the governing equation.
We seek this dispersion relation using linearizations about mean levels
�g in g and �u in u,

g ¼ �g þ Aeiðkx�xtÞ; u ¼ �u þ Beiðkx�xtÞ; (44)

where jAj � j�gj and jBj � j�uj. Substituting these into the standard
Boussinesq system (27) gives, after some algebra, the dispersion
relation

xSystemAð�g; kÞ ¼ �ukþ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �gð Þ 1� 1

3
k2

� �s
: (45)

The basis of the dispersive shock fitting method is that the
Whitham modulation equations are degenerate in the linear wave
and solitary wave limits. In the linear wave limit, this results in a
compatibility condition, which is the ordinary differential
equation,

dk
d�g

¼

@xSystemA

@�g

Vþ � @xSystemA

@k

; (46)
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for the wavenumber at the trailing edge, together with the boundary
condition k¼ 0 at g ¼ gþ to match with the solitary wave edge of the
undular bore.2,35 As stated above, the Riemann invariant on the char-
acteristic C� of the non-dispersive equations is conserved through the
undular bore. Hence, the Riemann invariant (39) gives

�u ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ �g

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gþ

p	 

; (47)

as g ¼ gþ and u¼ 0 ahead of the bore, which determines the mean
velocity �u in the dispersion relation (45). In addition, this expression
for �u gives that the characteristic velocity Vþ for the Riemann invari-
ant (38) in the differential equation (46) becomes

Vþ ¼ �u þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ �g

p
¼ 3

ffiffiffiffiffiffiffiffiffiffiffi
1þ �g

p
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gþ

p
: (48)

Using these results and the dispersion relation (45), the compatibility
condition (46) becomes

dk
d�g

¼

@xSystemA

@�g

Vþ � @xSystemA

@k

¼ k
2ð1þ �gÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

3 k
2

q
þ 1� 1

3
k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1
3 k

2
q

� 1þ 2
3
k2

; (49)

which determines the position of the trailing edge of the bore. This
equation is solved with the boundary condition k¼ 0 at �g ¼ gþ to
match with the solitary wave edge of the bore.

The differential equation (49) can be solved using the substitution
r2 ¼ 1� k2=3, which results in

dr
d�g

¼ � 1
2ð1þ �gÞ

ð1þ rÞð2þ rÞ
2rþ 1

: (50)

Integrating, we find

ð2þ rÞ3

1þ r
¼ Affiffiffiffiffiffiffiffiffiffiffi

1þ �g
p ; (51)

where A is a constant of integration. This constant of integration can
be found by matching with the leading, solitary wave, edge of the bore,
so that k¼ 0, r¼ 1, at �g ¼ gþ. Hence

A ¼ 27
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gþ

p
: (52)

The solution for the trailing, linear wave edge of the bore is then com-
pleted by noting that it occurs on the intermediate level �g ¼ gi. The
wavenumber at the trailing edge ki is then the solution of

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

3
k2i

r !3

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

3
k2i

r ¼ 27
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gþ

p ffiffiffiffiffiffiffiffiffiffiffiffi
1þ gi

p : (53)

With the wavenumber at the trailing edge determined, the position of
the trailing edge of the bore is determined by the linear group velocity,
which from the dispersion relation (45) is

cSystemA
G ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ gi

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gþ

p	 


þ 1þ gið Þ 1� 1
3
k2i

� �� �1=2
� 1
3
k2i

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ gi

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

3 k
2
i

q : (54)

The determination of the solitary wave edge of the undular
bore proceeds in a similar manner to the linear wave edge. The wave-
number k and the frequency x are replaced by a “conjugate” wave-
number ~k and “conjugate” frequency ~k defined by ~xSystemA

¼ �ixSystemAð�u; �g; i~kÞ.2,35 Equation (46) for the trailing edge of the
undular bore then becomes

d~k
d�g

¼

@ ~xSystemA

@�g

Vþ � @ ~xSystemA

@~k

¼
~k

2ð1þ �gÞ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

3
~k
2

r
þ 1þ 1

3
~k
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

3
~k
2

r
� 1� 2

3
~k
2
; (55)

for the leading, solitary wave edge. This ordinary differential equation can
be solved in a similar manner to the linear wave edge using the change
of variable ~r ¼ ð1þ ~k

2
=3Þ1=2 with the boundary condition ~k ¼ 0 at

�g ¼ gi to match with the linear wave edge on the intermediate level gi.
The details will not be given, but the final solution for the conjugate wave-
number at the solitary wave edge of the bore ~kþ is the solution of

27
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ gi

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gþ

p ¼
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

3
~k
2
þ

r !3

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

3
~k
2
þ

r : (56)

The position of the leading edge of the bore is determined by the soli-
tary wave velocity sþ ¼ ~xSystemA=~k, giving

sþ ¼ 1þ gþð Þ 1þ 1
3
~k
2
þ

� �� �1=2
; (57)

on setting �u ¼ uþ ¼ 0. In addition, using the amplitude–velocity rela-
tion (33) for the standard Boussinesq system, the amplitude of the lead
solitary wave of the undular bore is

aþ ¼ 1þ gþð Þ 1þ 1
3
~k
2
þ

� �
� 1: (58)

The leading and trailing edges of the bore for the standard Boussinesq
system have now been determined.

The dispersive shock fitting method can be applied to the other
Boussinesq systems in a similar manner. The details of the application
of the method to these other systems will then not be given, with just
the final result stated. While the leading and trailing edges can be
explicitly determined for the standard Boussinesq system (27) and the
Boussinesq–Hamiltonian system (28), the differential equation (46)
cannot be solved for the Whitham–Boussinesq systems (29) and (30).
In these latter cases, these ordinary differential equations will be inte-
grated numerically.

B. System B: Boussinesq–Hamiltonian system

The linear dispersion relation for the Boussinesq–Hamiltonian
system (28) is

xSystemB ¼ �ukþ k 1þ �g � 1
3
k2

� �1=2
: (59)

With this dispersion relation, the differential equation (46) can be
solved with the boundary condition k¼ 0 at �g ¼ gþ to yield the wave-
number ki of the trailing edge of the bore as
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k2i ¼ 3 1þ gið Þ 1� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gþ

pffiffiffiffiffiffiffiffiffiffiffiffi
1þ gi

p � 1

 !2
2
4

3
5; (60)

so that its position is determined by the group velocity,

cSystemB
G ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ gi

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gþ

p	 

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gi �

1
3
k2i

r

� k2i

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gi � 1

3 k
2
i

q : (61)

The differential equation (55) for the leading edge of the undular bore
can be solved to give

~k
2
þ ¼ 3 1þ gþð Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ gi

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gþ

p � 1

 !2

� 1

2
4

3
5; (62)

for the leading edge conjugate wavenumber, on using the boundary
condition k¼ 0 at �g ¼ gi, and

sþ ¼ 1þ gþ þ 1
3
~k
2
þ

� �1=2
; (63)

for the velocity of the leading edge of the undular bore. The amplitude–
velocity relation (35) for the Boussinesq–Hamiltonian solitary wave
gives that the amplitude of the leading edge of the undular bore is

aþ ¼ 2 1þ gþ þ 1
3
~k
2
þ

� �1=2
� 2: (64)

C. System C: Full-dispersion shallow water equations

The dispersion relation for the Whitham–Boussinesq system (29)
is, by construction,

xSystemC ¼ �ukþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ �gÞk tanh k

p
: (65)

With this dispersion relation, Eq. (46) for the linear trailing edge is

dk
d�g

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ktanhk

p

1þ �g

kþ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k tanh k

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k tanh k

p
� 1
2
tanh k� 1

2
ksech2k

: (66)

Unlike for the previous Boussinesq systems, the solution of this differ-
ential equation cannot be found and it has to be integrated numerically
with the boundary condition k¼ 0 at �g ¼ gþ. In a similar fashion, the
conjugate form of the dispersion relation (65) can be used in the dis-
persive shock fitting equation (55) to give

d~k
d�g

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
~k tan ~k

p
1þ �g

~k þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~k tan~k

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
~k tan~k

p
� 1
2
tan~k � 1

2
~k sec2~k

; (67)

which determines the leading edge of the undular bore, together with
the boundary condition ~k ¼ 0 at �g ¼ gi. Again, this differential equa-
tion is solved numerically. The velocity of the leading edge of the
undular bore is then sþ ¼ ~xSystemC

þ =~kþ. While the velocity of the

leading edge of the undular bore is determined by the dispersive shock
fitting method, the amplitude is not in the absence of the amplitude–
velocity relation for the Whitham–Boussinesq solitary wave.

D. System D: Whitham–Boussinesq–Hamiltonian
system

The dispersion relation for the Whitham–Boussinesq–
Hamiltonian system (30) is

xSystemD ¼ �ukþ k
tanhk
k

þ �g

� �1=2
: (68)

As for the previous Whitham–Boussinesq equation, the differential
equation

dk
d�g

¼ kffiffiffiffiffiffiffiffiffiffiffi
1þ �g

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanhk
k

þ �g

r
þ 1
2

ffiffiffiffiffiffiffiffiffiffiffi
1þ �g

p
ffiffiffiffiffiffiffiffiffiffiffi
1þ �g

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanhk
k

þ �g

r
� �g� 1

2
tanhk
k

� 1
2
sech2k

; (69)

for the trailing edge of the bore can only be solved numerically with
the boundary condition k¼ 0 at �g ¼ gþ. Similarly, the equation

d~k
d�g

¼
~kffiffiffiffiffiffiffiffiffiffiffi
1þ �g

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan~k
~k

þ �g

s
þ 1
2

ffiffiffiffiffiffiffiffiffiffiffi
1þ �g

p
ffiffiffiffiffiffiffiffiffiffiffi
1þ �g

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan~k
~k

þ �g

s
� �g � 1

2
tan~k
~k

� 1
2
sec2~k

; (70)

for the leading edge of the undular bore, together with the boundary
condition ~k ¼ 0 at �g ¼ gi is solved numerically. Again, the velocity of
the leading edge of the undular bore is sþ ¼ ~xSystemD

þ =~kþ, but in the
absence of the amplitude–velocity relation for the solitary wave solu-
tion, the amplitude of the leading edge is not determined. For the
amplitude comparisons of Sec. V, the amplitude of the leading edge of
the bore is taken from numerical solutions of Systems C and D.

IV. NUMERICAL METHODS

The numerical solutions of the water wave equations (2)–(5)
were found using the Hamiltonian formulation (19) and (20) based on
a pseudospectral method.56 There are many examples of the applica-
tion of such methods to solve the water wave equations based on vari-
ous extensions of these pseudospectral methods.57,58 Using the
formulation of Guyenne,58 we write the Hamiltonian equations (19)
and (20) as

vt ¼ Lv þNv; where

L ¼
0 G0

�g 0

 !
; N ¼

ðG� G0Þn

�
n2x � ðGnÞ2 � 2nxgxGn
h i

2 1þ g2x
� �

0
BBB@

1
CCCA;

(71)

and v ¼ ðg; nÞT .58 The system (71) is solved using a split step method
where the linear and nonlinear components are solved separately,

vt ¼ Lv; vt ¼ Nv: (72)

The second-order Strang splitting split step method
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vnþ1 ¼ NDt
2
LDt NDt

2
vn (73)

is then used for each time step Dt. The nonlinear equation, the second
of (72), is first solved using a half time step, followed by the linear
equation, the first of (72), using a full time step, then the nonlinear
equation again using a half time step. The linear system itself is solved
in Fourier space using the integrating factor method59,60 to enhance
stability of the scheme for the high-frequency modes, while the nonlin-
ear system is solved using the second-order Runge–Kutta method.
Both the Strang split step method and the second-order Runge–Kutta
method are second-order accurate in time, giving a OðDt2Þ error for
the full time evolution. For the nonlinear equation, the operator G and
derivative terms are calculated in Fourier space. It was found that three
terms in the series (13), up to G2, provide sufficient accuracy for this
and that adding extra terms made no difference to the solution to the
accuracy required here. While the integrating factor method sup-
presses instability due to high-frequency modes, it was found neces-
sary to further suppress such instability when integrating to the long
times required to obtain steady undular bore parameters to compare
with solutions of the various Boussinesq systems. This was performed
by using the smoothing and filtering techniques suggested by Craig
and Sulem57 and Guyenne and Nicholls.61

The numerical calculations of this work were performed with
n ¼ 215 Fourier modes, which gives enough accuracy to successfully
capture the numerical solution up to the largest initial jumps, with a
time step of dt¼ 0.01. To ensure stability of the numerical solution of
the water wave equations, we applied a low pass filter. It was found
that for n ¼ 215 filtering the higher modes corresponding to wave-
numbers lying in the band ½n8 ; n2� was adequate to suppress numerical
instability, particularly for higher initial jumps. The effect of filtering
on the bore solution of the water wave equations was tested by altering
the bandwidth. Varying the bandwidth around that used here showed
no visible variation in the final bore solution. The major effect of too
much filtering was on the trailing edge of the bore as the waves there
are of the highest frequency and lowest amplitude. It was found that
too much filtering kills the linear wave edge of the bore. The filtering
used here showed a good compromise between the high Fourier reso-
lution, n ¼ 215, stable solutions for long time periods, and minimal
effect on the resulting solution. For the numerical solutions of the
water wave equations, the domain lengths 10 000 or 11 000 were used,
depending on the final time chosen for the solution. For the numerical
solutions of the present work, the level ahead gþ ¼ 0 was used. A
non-zero level ahead just involves a rescaling of the equations through
an alteration of the undisturbed depth h0, which was used to nondi-
mensionalize the water wave equations (2)–(5), to be the total depth
ahead of the step.

The smoothing of the initial condition alters the DSW’s oscilla-
tory structure in the neighborhood of the DSW harmonic edge. The
initial condition (31) smoothed using hyperbolic tangents is

gðx; 0Þ ¼ gþ � 1
2

g� � gþð Þ tanh
x
W

� tanh
x � x�
W

� �
: (74)

This smoothed initial condition has a “top hat” shape with the “brim”
level gþ and the “crown” level g�. This top hat shape was used for the
numerical solution to ensure periodicity in the computational domain
for the Fourier solution. The jump across the initial condition is
denoted by D ¼ g� � gþ. If x� is chosen so that x� � 0, then the

smoothed step (74) approximates the initial condition (31) as long as
waves generated at x¼ 0 do not reach the step down. It was found that
there was some change in the solution as the smoothing widthW var-
ied from 10 to 5, mostly at the trailing, linear wave edge of the bore
with the leading edge amplitude changing by only 0.2%. Furthermore,
asW decreased from 5 to 2, there was no change in the leading edge of
the bore and negligible change at the trailing edge which was below
the graphical accuracy of the figures shown in Sec. V. This dependence
of the bore solution on the smoothing of the initial condition, particu-
larly at the trailing, harmonic edge, is a general property of bores and
has been studied and documented for the KdV equation.62 For the
numerical solutions of Systems A and B and the water wave equa-
tions, the smoothing width W¼ 2 was chosen and for Systems C
and D, W¼ 1 was chosen. The smaller value of the smoothing
width was possible for Systems C and D, as the linear phase velocity
is bounded due to tanhk, so that the numerical schemes have better
stability.

Figure 2 displays the dependence of the bore solution on the
strength of the smoothing width W of the numerical initial condition
(74), for W ¼ 10; 2; 5=3, for the initial jump D ¼ 0:28. It can be seen
that the large smoothing width W¼ 10 gives a greatly truncated trail-
ing edge in comparison with the sharper initial conditions withW¼ 2
and W¼ 5/3. In addition, the solutions for W¼ 2 and W¼ 5/3 are
identical to graphical accuracy, which gives confidence in the choice
W¼ 2 for the water wave solutions of the present work.

In addition, the Boussinesq systems (27) and (28) and the
Whitham–Boussinesq systems (29) and (30) were solved numerically
using the pseudospectral method of Fornberg and Whitham,56 as
extended through the use of integrating factors to suppress high-
frequency instabilities.59,60 These pseudospectral methods use the fast
Fourier transform (FFT) to calculate the spatial derivatives, with the
solution propagated forward in time using the second-order
Runge–Kutta scheme and Strang splitting, which is also second order.
Pseudospectral methods are particularly suitable for the
Whitham–Boussinesq systems as the dispersion for these systems is
given by Fourier integrals. The initial condition (31) was smoothed

FIG. 2. Trailing edge of the water wave bore at t¼ 1700 for the jump D ¼ 0:28 for
the smoothing widths W ¼ 10; 2; 5=3 of the numerical approximation (74) of the
initial condition (31). Red (full) line: trailing edge for W¼ 10; green (dashed) line:
trailing edge for W¼ 2; and blue (dotted) line: trailing edge for W¼ 5/3.
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using (74) for the numerical solutions of the four Boussinesq and
Whitham–Boussinesq systems. It was found that the numerical solu-
tion of the Whitham–Boussinesq equations was stable for a smoothing
width W¼ 1, while for stability the numerical solution of the water
wave equations required larger smoothing widths between 2 and 10,
with W¼ 2 chosen, as stated above. For Systems A, C, and D n ¼ 216

Fourier modes were used with a time step dt¼ 0.005, while for System
B n ¼ 215 Fourier modes were used with a time step dt¼ 0.01. Finally,
the ordinary differential equations (66), (67) and (69), (70) for the
trailing and leading edges of the undular bore for Systems C and D,
respectively, were solved using the second-order Runge–Kutta
method.

V. COMPARISON OF FULL WATERWAVE THEORY AND
WHITHAM–BOUSSINESQ SYSTEMS

Figure 3 shows comparisons for the properties, the lead solitary
wave velocity sþ and amplitude aþ, of the lead (solitary) wave of the
undular bore as given by the full water wave equations (2)–(5), the stan-
dard Boussinesq system (27), the Hamiltonian Boussinesq system (28),
the Whitham–Boussinesq equation (29), and the Whitham–
Boussinesq–Hamiltonian system (30) as the initial jump height
D ¼ g� � gþ varies until the onset of Benjamin–Feir instability around
D ¼ 0:3. The issue of unstable bore evolution will be discussed later.
The lead wave velocities of the bore for the four Boussinesq systems are
given by the dispersive shock wave solutions of Sec. III. As the amplitu-
de–velocity relations for the solitary wave solutions of the Boussinesq
equations (27) and (28) are known, see Eqs. (33) and (35), the ampli-
tudes of the lead wave of the bores for the standard Boussinesq system
(27) and the Hamiltonian–Boussinesq system (28) are determined by
the dispersive shock fitting method, given by (58) and (64), respectively.
As the amplitude–velocity relations of the solitary wave for the
Whitham–Boussinesq systems (29) and (30) are not known, the ampli-
tudes of the lead wave of the bores for these systems were determined
from numerical solutions of the Whitham–Boussinesq systems. In this,
and subsequent comparisons, solutions of the Boussinesq and
Whitham–Boussinesq systems are color coded, solutions of System A

are denoted by pink (dotted-dashed) lines, solutions of System B by
blue (dotted) lines, solutions of System C by red (full) lines, and solu-
tions of SystemD by green (dashed) lines. The differences in the proper-
ties of the lead wave of the bore as given by the Boussinesq systems and
the water wave equations are small, until near the onset of instability.
The dispersive shock fitting method gives the leading and trailing edges
of the bore when these reach their steady values. It was found that the
numerical bore solution of the water wave equations took an unrealistic
amount of time to reach a steady state, of the order of t¼ 20000, as will
be discussed below. Hence, to obtain valid comparisons between predic-
tions of the dispersive shock wave fitting method and numerical solu-
tions of the water wave equations, the steady amplitude and velocity of
the lead wave of the water wave bore were estimated using extrapola-
tion. It was found that the exponential function

j� be�cðt�t0Þ (75)

gave a good fit to the numerical amplitude and velocity for t0 chosen
large enough so that the start-up transients involved in the formation
of the bore have died down. The values of the fitting parameters j, b
and c were determined from the numerical amplitude and velocity
data using a Matlab fitting routine that creates a fit to the velocity and
amplitude data with the model specified by (75) and returns fitted
parameter values, as well as estimators of confidence intervals. The
data were also reprocessed by applying smoothing to reduce the small
noise within the velocity and amplitude data. It was found that suitable
values of t0 were from 1500 to 1550, with the fitted parameter values
weakly dependent on t0 in this range. The steady lead wave bore
parameters are then given by j. With this fitted extrapolation function,
the time needed for the amplitude and velocity to reach to within
0.01% of the steady state value j can be estimated, noting that this
level of accuracy was needed to show the differences between the four
Boussinesq systems and solutions of the water wave equations for the
lead wave velocity to graphical accuracy. This time depends on the
value of D, but was found to vary between 15 000 and 49 000, with
the higher values unrealistic for the numerical solution. It should be
pointed out that for the fitting procedure, there is a compromise—

FIG. 3. Comparisons between properties of the lead wave of the undular bore as given by the Boussinesq systems A and B, the Whitham–Boussinesq systems C and D, and
the water wave equations. Pink (dotted-dashed) line: solution of standard Boussinesq system (27); blue (dotted) line: solution of Hamiltonian Boussinesq system (28); red (full)
line: solution of Whitham–Boussinesq equation (29); and green (dashed) line: solution of Whitham–Boussinesq–Hamiltonian system (30); solution of water wave equations
(2)–(5): black squares. (a) Lead wave velocity sþ and (b) lead wave amplitude aþ. Here, gþ ¼ 0.
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since the closer the start of the fitting interval is to the final time, the
better the results should be. However, the fitting interval needs to be a
minimum length in order to obtain robust results. It was verified that
varying the length of the fitting interval around the final length used
gave no visible variation in the final parameters.

Figure 3(a) shows that there is excellent agreement between solu-
tions of the Whitham–Boussinesq systems and numerical solutions of
the water wave equations for the velocity of the leading edge of the
bore, with the velocity as given by Systems A and B being somewhat
less than the water wave velocity, the maximum difference for System
A being 0.7% and for System B 0.4%. The water wave lead velocity is
slightly closer to that given by System C for the larger jump heights
until near D ¼ 0:3 for which the velocity predicted by System D is
closer. Overall, the differences between the predictions of System C
and D are small, with a maximum difference from the water wave lead
velocity of 0.1% for System C and 0.2% for System D. The comparison
starts at the jump height D ¼ 0:1 as below this the Boussinesq sys-
tems, Whitham–Boussinesq systems and water wave equations give
identical results to graphical accuracy. It can be seen that the differ-
ences in the lead wave velocities as given by the four Boussinesq sys-
tems and the water wave equations are not large, due to the lead wave
amplitude not being large before the onset of instability, as seen from
Fig. 3(b). An important conclusion is that the Whitham–Boussinesq
systems are sufficient to give essentially the same leading edge velocity
as the water wave equations. Given the additional complexity in solv-
ing and analyzing the water wave equations compared with the KdV-
like Whitham–Boussinesq systems, this shows that in this regard the
Whitham–Boussinesq systems are sufficient.

Figure 3(b) shows a similar comparison for the amplitude of the
leading edge of the bore. The agreement between the solutions of the
Boussinesq systems and the solution of the water wave equations is
not as good as for the leading edge velocity. This is typical for bore sol-
utions of nonlinear dispersive wave equations, which typically show
better agreement for the leading edge velocity than the leading edge
amplitude.2 The comparison shows that the amplitude of the bore as
given by the water wave equations lies between the amplitude as given
by the Boussinesq and Whitham–Boussinesq systems, but is closer to
the amplitude given by the Whitham–Boussinesq systems. The ampli-
tude as given by the Whitham–Boussinesq systems grows much more
rapidly as the jump height D increases toward the onset of instability
around D ¼ 0:3, with the difference growing from 5% at D ¼ 0:25 to
12% at D ¼ 0:30 and from 6% at D ¼ 0:25 to 20% at D ¼ 0:3 for
Systems C and D, respectively. This growing disagreement is tied to
the growth of the instability of the bore solution of the
Whitham–Boussinesq systems as D ¼ 0:3 is approached, as will be
discussed in detail below.

Figure 4 shows comparisons between solutions of the two
Boussinesq systems (27) and (28) and the two Whitham–Boussinesq
systems (29) and (30) with numerical solutions of the water wave
equations (2)–(5) for the jump D ¼ 0:15 with the bore moving into
undisturbed depth. For this jump height, Fig. 3 shows that there is little
difference in the amplitude and velocity of the lead wave of the undu-
lar bore between Systems A to D and the water wave equations. The
greatest difference is in the lead wave amplitude, with the water wave
amplitude being between those of Systems A and B and Systems C
and D, but closer to the latter amplitudes. These general results are
confirmed by the solutions at t¼ 1700 displayed in Fig. 4. It should be

noted that at t¼ 1700 neither the lead wave amplitude nor the lead
wave velocity have reached the steady state values displayed in Fig. 3,
as discussed at the beginning of this section. As the initial jump creat-
ing the undular bore is low, there is little difference in the solutions of
Systems A to D. There is some difference in the envelope of the undu-
lar bores as given by these systems and the full water wave equations,
but the main difference between the water wave bore and the
Boussinesq andWhitham–Boussinesq bores is a phase difference, with
the water wave bore behind these weakly nonlinear bores. To leading
order Whitham modulation theory does not determine the modulated
phase of the wavetrain.2 The determination of this modulated phase
requires the extension of Whitham modulation theory to next order,
which is non-trivial.63,64 The position of the trailing edge of the undu-
lar bore is given by (54), (61), (66), and (69) for Systems A to D,
respectively. The thick blue line in the figures shows the intermediate
level ui given by (43). This line terminates at the trailing edge position
as given by the Boussinesq and Whitham–Boussinesq systems. The
final observation from Fig. 4 is that all four weakly nonlinear systems
give a good prediction for the location of the trailing edge of the water
wave bore. There is no distinct location for the trailing edge as there is
for the leading edge since there is an extended wavetrain propagating
upstream, so its location is subjective. The trailing edge group velocity
for Systems A and B is slightly lower than that for Systems C and D,
so that the trailing edge position for Systems A and B corresponds to
lower amplitude waves of the water wave bore. An approximation to
the trailing edge of an undular bore is to extrapolate the envelope of
the waves at the rear of the bore down to the intermediate level ui. If
this is done for the water wave bore of Fig. 4, then this position lies
between those predicted by Systems A, B and Systems C, D.

Figure 3 shows that the leading solitary wave of the undular bore
is well predicted by the two Whitham–Boussinesq systems (29) and
(30). The original motivation for the introduction of Whitham-type
equations was that the inclusion of the full linear dispersion relation
introduces short wave effects which are not present in equations on
which they are based,1 for instance, the Boussinesq systems (27) and
(28). One of these is modulational instability (MI), also termed
Benjamin–Feir instability.1 For jump heights D above 0.3, the undular
bore solutions of the two Whitham–Boussinesq systems and the water
wave equations develop instability, which starts in the interior of the
bore. It should be noted that careful tests were made by varying the
time step and the number of modes used for the computational inter-
val to verify that these instabilities were not numerical. Figure 5 illus-
trates the development of the instability above the jump D ¼ 0:3 for
Systems C and D and the water wave equations. The thick blue lines
in Fig. 5 show the intermediate level gi (43). As for Fig. 4, this line ter-
minates at the trailing linear edge of the bore as determined by (66)
and (69). Figures 5(a) and 5(b) show the development of the instability
for System C as the jump height increases. Below D ¼ 0:3025, numeri-
cal solutions do not show any sign of instability up to t¼ 2000.
Figure 5(a) shows that for the jump D ¼ 0:303 instability first devel-
ops in the interior of the bore, as was found for the original Whitham
equation based on the KdV equation.65 The wavenumber in this
unstable region is around k¼ 0.90, which is comparable with the
wavenumber k¼ 0.96 of the initial unstable region of the bore for the
Whitham equation.65 The wavenumber instability threshold for grav-
ity water waves is k¼ 1.361 (since the depth h0 has been normalized to
1). However, this result is for the stability of a gravity wave Stokes
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wavetrain. The interiors of Whitham–Boussinesq undular bores are
far from a Stokes wave, so these wavenumbers are not totally compara-
ble. However, given these restrictions, the instability wavenumbers are
in reasonable agreement. The final comment is that modulation theory
gives a good prediction for the trailing edge of the bore even though
the bore is becoming unstable. Further increase in the step height D
results in the instability becoming more pronounced, as expected, as
illustrated in Fig. 5(b). The intermediate level is well predicted, but
there is an extended wavetrain beyond the theoretical trailing edge, as
is common for undular bore solutions determined from Whitham
modulation equations.2

Figures 5(c) and 5(d) illustrate a similar development of the insta-
bility, but for System D. The solution of Fig. 5(c) shows the develop-
ment of the instability for a step height, D ¼ 0:315, which is just above
the threshold for the onset of instability. It can be seen that there is a
modulation of the bore envelope, in contrast to the smooth envelope
of Fig. 4(d). The wavenumber of this envelope oscillation is around
k¼ 0.87, which is very close to the instability wavenumber of Fig. 5(a)
for System C and in basic accord with the Benjamin–Feir instability
threshold. There is then a distinct difference between the predictions

of the Whitham–Boussinesq equations of Systems C and D. The insta-
bility for System C develops in a finite region interior to the bore, as
for the Whitham equation,65 but the instability for System D develops
as a modulation over the entire bore. Figure 5(d) illustrates a fully
unstable bore for the slightly higher step D ¼ 0:32. The instability is
stronger than that for System C in Fig. 5(b). The bore breaks up with a
series of solitary-like waves being shed ahead. The amplitudes of the
waves of the bore itself are more uniform than in a stable bore, as for
the unstable bore of System C in Fig. 5(c), and the actual amplitude
distribution is random, as expected. This overall structure of the unsta-
ble bores for Systems C and D, the more uniform amplitude distribu-
tion than for stable bores and the random nature of individual waves,
is common for unstable bores.66

Figures 5(e) and 5(f) show the development of instability for the
DSW solution of the water wave equations in a similar manner to
Systems C and D. Figure 5(e) shows the water wave DSW for the
jump D ¼ 0:36, which is the jump height for the onset of instability
and Fig. 5(f) shows the DSW for D ¼ 0:37, which is fully unstable.
The water wave DSW for the jump D ¼ 0:35 and below shows no
instability. The thick blue lines in these figures show the intermediate

FIG. 4. Stable bore solutions of Boussinesq systems A (27) and B (28), the Whitham–Boussinesq systems C (29) and D (30) and the water wave equations (2)–(5) for
D ¼ 0:15 at t¼ 1700. (a) System A: pink (dotted-dashed) line; water wave equations: black (full) line with squares. (b) System B: blue (dotted) line, water wave equations:
black (full) line with squares. (c) System C: red (full) line; water wave equations: black (full) line with squares. (d) System D: green (dashed) line; water wave equations: black
(solid) line with squares. Intermediate level (43): thick blue line.
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level given by (43) with these lines terminating at the trailing edge
position (69) of System D. The borderline unstable water wave DSW
of Fig. 5(e) shows an overall envelope modulation, which is similar to
the borderline unstable DSW for System D shown in Fig. 5(c) and
differs from the borderline unstable DSW for System C shown in

Fig. 5(a) for which the instability develops in a restricted region inte-
rior to the DSW. The wavenumber of the water wave DSW at the
upstream edge of the unstable region near x¼ 2250 is k¼ 0.76, which
is not near the Benjamin–Feir threshold of k¼ 1.36 and further from
k¼ 1.36 than the unstable Systems C and D DSWs. The upstream

FIG. 5. Solutions of Whitham–Boussinesq systems C (29) and D (30) and the water wave equations (2)–(5). (a) System C: red (full) line at t¼ 1800 for D ¼ 0:303, (b)
System C: red (full) line at t¼ 1400 for D ¼ 0:315, (c) System D: green (dashed) line at t¼ 1700 for D ¼ 0:315, (d) System D: green (dashed) line at t¼ 1700 for D ¼ 0:32,
(e) water wave equations: black (solid) line at t¼ 2200 for D ¼ 0:36, and (f) water wave equations: black (solid) line at t¼ 2400 for D ¼ 0:37. Intermediate level (43): thick
blue line.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 067105 (2021); doi: 10.1063/5.0050067 33, 067105-12

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


edge of the unstable portion of the DSW starts near its center, which is
far from a Stokes wave. System D then gives a better prediction of the
initial development of water wave DSW instability than System C.
Figure 5(f) shows a fully unstable water wave bore for the initial jump
D ¼ 0:37. There is a modulation of the bore envelope, which is similar
to that of Fig. 5(e), but stronger. The noticeable difference with the
fully unstable System D bore of Fig. 5(d) is that there is not the genera-
tion of large amplitude solitary waves at the leading edge due to the
instability. Overall, System D gives a better prediction of the develop-
ment of the instability and gives a better prediction of the stability
threshold, but both Systems C and D give stability thresholds below
that of the water wave equations. This is not unexpected as the
Whitham–Boussinesq equations are being pushed beyond their region
of expected validity.

VI. CONCLUSIONS

The formation and propagation of surface water wave undular
bores have been studied using four Boussinesq systems. Two of
these were standard Boussinesq systems for weakly nonlinear long
waves, one the standard Boussinesq system1 and the other the sys-
tem arising from the Hamiltonian formulation of the water wave
equations.51 The other two Boussinesq systems were Whitham
equation1,44 extensions of these Boussinesq systems which are still
weakly nonlinear, but include full linear water wave dispersion.
The undular bore solutions of these four Boussinesq systems were
compared with numerical solutions of the full water wave equa-
tions. It was found that the two Whitham–Boussinesq systems give
improved agreement with solutions of the water wave equations, as
expected. The major result found is that the Whitham–Boussinesq
systems give near excellent agreement with solutions of the water
wave equations for the positions of the leading and trailing edges of
the undular bore.

It is found that the Whitham–Boussinesq system C and the
Whitham–Boussinesq system D derived from the Hamiltonian formu-
lation of the water wave equations give excellent agreement for the
velocities of the leading and trailing edges of the bore, better than those
given by solutions of the Boussinesq systems A and B. The agreement
for the amplitude of the lead wave of the undular bore is not as good
as for the lead wave velocity, but again the bidirectional Whitham sys-
tems, Whitham–Boussinesq systems, are in better agreement than the
Boussinesq systems. In addition, the Whitham–Boussinesq systems
give accurate predictions for the initial surface step height for the onset
of modulational instability (MI), noting that this instability does not
occur for the original Boussinesq systems. The growing differences
between the amplitudes of the bore as given by the
Whitham–Boussinesq systems and the full water wave equations as
the height of the initial jump which generates the bore increases is
linked to the onset of instability since solutions of the
Whitham–Boussinesq systems show much greater variations in the
amplitudes of the individual waves of the bore in the unstable regime.
Above a nondimensional initial step height of 0.3, there is a rapid tran-
sition to the unstable regime for bore solutions of the two
Whitham–Boussinesq systems and a somewhat slower transition to
instability for the bore solution of the full water wave equations. As a
summary, it is found that the Whitham–Boussinesq systems give
excellent agreement with undular bore solutions of the full water wave
equations up until the onset of instability, so much so that they could

be used as an alternative to the full water wave equations, noting that
they are much simpler to solve and analyze.

The two Whitham–Boussinesq systems, Systems C and D,
give very accurate predictions for the velocity of the leading edge of
the undular bore up until the onset of modulational instability.
System D is in better agreement with solutions of the water wave
equations for D < 0:22, while System C is better above this jump
height. However, the maximum difference between the lead wave
velocity as given by System D and the water wave equations is
0.2%, while the maximum difference for System C is 0.1%, so both
systems give very accurate predictions and there is not much
between these two Whitham–Boussinesq systems. The amplitude
of the lead wave of the undular bore is not as well predicted as the
leading and trailing edge velocities by the Whitham–Boussinesq
systems. The agreement between the amplitudes given by Systems
C and D with the water wave amplitude follows the same general
trend as for the lead wave velocity, with System D being better for
D < 0:22 and System C better above this value. In addition, the
Whitham–Boussinesq–Hamiltonian system, System D, gives a
good prediction for the initial jump height D for the onset of mod-
ulational instability of the undular bore, better than that of System
C, and for the overall development of this instability. In summary,
the Whitham–Boussinesq systems are very accurate models of sur-
face water wave undular bore propagation. Indeed, they can be
concluded to provide a very accurate alternative to the full water
wave equations for the study of water wave undular bores. This
could prove useful as Whitham-type equations are much easier to
solve and analyze than the full water wave equations.
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